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NECESSARY AND SUFFICIENT FRACTURE CRITERIA FOR A COMPOSITE

WITH A BRITTLE MATRIX. PART 1. WEAK REINFORCEMENT

UDC 539.375V. M. Kornev

Fracture of a composite medium with a brittle matrix is studied. The brittle or plastic material of
the reinforcing elements is highly deformable. For normal-rupture macrocracks, necessary criteria
of brittle strength and sufficient criteria of quasibrittle strength are proposed. Simple analytical
dependences of the macrocrack length on the loading parameter, structural, rigidity, and strength
parameters of the medium, and damage parameters of the material of the components are obtained.
The critical loads for these criteria may differ substantially even if the reinforcement coefficient is
small and the material of reinforcing elements is highly deformable. If the necessary criterion is
satisfied, crack extension occurs and microcracks are formed in the bonds of the structure located
ahead of the macrocrack tip. The number of damaged bonds depends on the macrocrack opening and
characteristics of postcritical deformation of the damaged bonds.

Introduction. Neuber [1] and Novozhilov [2] studied fracture of brittle bodies with various quasiregular
structures. In the Neuber–Novozhilov criteria [1, 2], the averaging strongly depends on the characteristic linear
dimensions of a regular-structure elementary cell. A composite material is a typical structured medium. In studying
the composite fracture, one encounters problems that differ considerably from the classical problems of the elasticity
theory. Below, we give an example where the regular structure of a composite is determined by two characteristic
linear sizes: the diameter of highly deformable inclusions and the distance between these inclusions. The author [3, 4]
considered the fracture of brittle isotropic solids with a hierarchy of regular structures, each being described by only
one linear size.

We first briefly review the necessary and sufficient fracture criteria for isotropic solids with one structure. The
necessary criteria considered in [2, 4] can be used to describe fracture of composites with a brittle matrix. The use of
the sufficient criterion [2] proposed for homogeneous bodies can lead to erroneous results in calculating composites.
Let the necessary criterion be satisfied. Then the structure of the body nearest to the crack tip is in the critical
state. However, after the critical load of this structure is exceeded, the cracked body can sustain additional loading
owing to simultaneous postcritical deformation of the structure ahead of the crack tip and subcritical deformation
of the next structure. If the sufficient criterion is satisfied, the critical load of simultaneous deformation of two or
more structures ahead of the crack tip is exceeded, and the body with a crack is broken into fragments.

Let us consider the classical sufficient criteria [5–8] in more detail. Nazarov and Polyakova [9] gave a mathe-
matical interpretation of the Leonov–Panasyuk–Dugdale model [5, 6]. For the two-term asymptotic representation
of the solution (isotropic material), the stresses on the continuation of the crack (y = 0) in the vicinity of its tip
can be written with accuracy to higher-order terms as

σy(x, 0) ' σ∞ +K0
I /(2πx)1/2, (1)

where σ∞ is the characteristic stress at infinity and K0
I is the total stress-intensity factor (SIF). The total SIF can

be written in the form [10]

K0
I = K0

I∞ +K0
I∆, K0

I∞ > 0, K0
I∆ < 0. (2)
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Fig. 1

Here K0
I∞ is the SIF induced by the stresses σ∞ and K0

I∆ is the SIF induced by the stresses σm that act, in
accordance with the Leonov–Panasyuk–Dugdale model, in the vicinity of the crack tip in the pre-fracture zone (∆ is
the length of the loaded region or pre-fracture zone). The stresses σm coincide with the “theoretical” strength of a
single crystal [2, 10]. The restrictions

K0
I = 0, (3)

K0
I > 0 (4)

are imposed on relations (1) and (2), respectively. In the classical criteria [6, 7], restriction (3) is essentially used.
The class of solutions corresponding to restriction (4) is analyzed in [10, 11].

Remark 1. The total SIF K0
I cannot be negative since, for K0

I < 0, the crack flanks overlap with one
another, which can be easily verified.

Below, we consider restriction (4), which implies that relation (1) contains a singular component of the
solution. Infinite stresses at the crack tip, which are inconsistent with the continual criterion, do not contradict the
discrete criterion [1, 2] if the singular component has an integrable singularity.

For analysis, the pre-fracture zone adjacent to the crack tip is of primary interest. We denote the quantities
that refer to the initial composite and reinforcing fibers (inclusions) by the subscripts 1 and 2, respectively. For the
model of a composite material in question, the stresses σm2 = const in the pre-fracture zone may differ from the
“theoretical” strength σm1 of a bundle of fibers with a brittle matrix. The following cases are possible: 1) σm1 > σm2;
2) σm1 = σm2; 3) σm1 < σm2. The second case with restriction (4) was considered in [10, 11]. The first case
corresponds to weak reinforcement and the third case to high-strength reinforcing fibers; in the first and second
cases, restrictions (3) or (4) can be satisfied.

It should be noted that the use of the necessary criterion of brittle strength and sufficient criterion of
quasibrittle strength proposed by Novozhilov [2] seems to be reasonable in the analysis of the pre-fracture and final
rupture of a composite.

1. Physicomechanical Model of a Bundle of Fibers for the Pre-Fracture Zone. Let the initial
composite have a regular structure characterized by one geometrical parameter r1 (r1 is the distance between the
fibers-inclusions). For simplicity, we assume that, after averaging, the composite is described by the equations of
isotropic elastic media everywhere outside the pre-fracture zone. In the pre-fracture zone, the behavior of the partly
ruptured composite depends on its structure and the σ–ε relation of reinforcing fibers. The simplest model of a
composite is the fiber-bundle model. It should be noted that the structure of the composite can contain no fibers
before fracture. Below, we consider an example where fibers are formed from inclusions in the pre-fracture zone
upon crack propagation only through the brittle matrix. The material of these inclusions is assumed to be highly
deformable.

Let each representative bundle of fibers be bonded by a brittle matrix and reinforcing fibers be brittle or
plastic. We assume that the limiting relative elongation of the fibers is much greater than that of the matrix.
Figure 1 shows simplified σ–ε diagrams of a fiber bundle and their approximations. The solid straight line 1 refers
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to elastic deformation of the composite (fiber bundle), and the solid curves 2–4 refer to the first (σm1 > σ
(1)
m2),

second (σm1 = σ
(2)
m2), and third (σm1 < σ

(3)
m2) cases of fiber deformation where the matrix is disrupted. The dashed

straight lines 5–7 are approximations of curves 2–4, respectively. In Fig. 1, the following notation is used: σm1 is
the “theoretical” strength of the fiber bundle with allowance for the damaged matrix, εm1 and εm2 are the limiting
relative elongations of the matrix and fibers (εm1 < εm2), σ(1)

m2, σ(2)
m2, and σ(3)

m2 are the averaged stresses acting in the
pre-fracture zone for the first, second, and third cases, respectively (σ(2)

m2 = σm1). In the Leonov–Panasyuk–Dugdale
model, these averaged stresses are calculated using energy considerations [2, 5, 6, 10, 11]:

σm2 =
1

εm2 − εm1

εm2∫
εm1

σ(ε) dε. (5)

Figure 1 and relation (5) refer to “testing” of a fiber bundle of the composite in an extremely rigid machine.
The phenomenological models in fracture mechanics are described in [12, 13]. The mechanism of fracture of

a composite with a brittle matrix is the growth of a macrocrack in the matrix followed by breakage of fibers [12];
only after fibers are broken, the composite disintegrates.

In formulating the strength criteria, it is impossible to use the quantities εm1 and εm2 directly since the
characteristic linear size is absent. We consider the cross-sectional size of the pre-fracture zone and denote it by a
(for a single crystal, this size is equal to the lattice constant [2, 10]; in Sec. 3, the linear size a is the diameter of
inclusions). Thus, the pre-fracture zone occupies a rectangle with the sides ∆ and a (see [14]). The crack opening
at the point x = −∆ is determined as am2 = (εm2 − εm1)a. In the pre-fracture zone, the constant stresses σm2 act
in the interval [−∆, 0) (the origin of the coordinate system is located at the right tip of the crack). The stresses
σm2 “try” to close the crack.

Finally, we have two sets of parameters: the geometric parameters r1,∆, and am2 and the force parameters
σm1 and σm2. The first parameters of these sets, r1 and σm1, are used to formulate the necessary criterion of brittle
strength, and the complete set of parameters is used to formulate the sufficient criterion of quasibrittle strength.

2. Necessary Criterion of Brittle Strength and Sufficient Criterion of Quasibrittle Strength of
a Composite. A normal-rupture crack in a composite is modeled by a bilateral cut. The necessary discrete–integral
criterion of brittle strength has the form (∆ = 0)

1
kr1

nr1∫
0

σy(x, 0) dx 6 σm1, x > 0. (6)

The sufficient discrete–integral criterion of quasibrittle strength has the following form (∆ > 0 and am2 > 0):

1
kr1

nr1∫
0

σy(x, 0) dx 6 σm1, x > 0; 2v∗ =
æ + 1
G

K0
I

√
∆
2π
6 am2, x 6 0. (7)

Here σy are the normal stresses on the continuation of the crack (they can have a singular component), Oxy is the
Cartesian coordinate system whose origin coincides with the right tip of the crack, r1 is the characteristic linear
size of the composite-material structure, n and k are numbers (n > k, where k is the number of undamaged fibers),
nr1 is the interval of averaging, (n− k)/n is the coefficient that takes into account damaged reinforcement in this
interval, 2v = 2v(x) is the crack opening, 2v∗(−∆) = am2 is the critical crack opening for which the fiber nearest
to the crack center fails, æ = 3 − 4ν or æ = (3 − ν)/(1 + ν) for plane strain and plane stress, respectively (ν is
Poisson’s ratio), G is the shear modulus, and K0

I is the total SIF calculated from relation (2) for the corresponding
problem. The stresses in criteria (6) and (7) are averaged within the limits that depend on the presence and location
of defects (failure of fibers) in the pre-fracture zone of the deformed composite. Damage in the pre-fracture zone
strongly depends on the initial damages of the composite.

3. Crack Extension in a Composite upon Formation of Force Bonds at the Crack Tip. There are
brittle materials (for example, ceramics) that easily fail under extension in the presence of crack-like macrodefects.
Introducing small amounts of highly deformable additives (weak reinforcement) significantly changes the behavior
of the composite in the pre-fracture zone. Problems related to crack propagation in media with such a structure
were considered in [15, 16]. The following highly deformable components were introduced into a brittle ceramic
matrix: gold (metal) or Teflon (solid polymer). It was found that, under certain conditions, these materials possess
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Fig. 2

Fig. 3

a higher crack resistance. We use criteria (6) and (7) to interpret the effects observed in [15, 16]. We consider a
two-dimensional formulation of the problem.

3.1. Stress State in the Vicinity of the Crack Tip. We study the quasistatic extension of plane cracks in
a composite with a highly deformable component. Let this component form a system of sparse inclusions in a
brittle ceramic matrix (Fig. 2a). It is assumed that cylindrical inclusions are located regularly (a is the diameter
of the inclusions and r1 is the distance between their centers). A plane crack passes through the centers of the
inclusions, and the forces acting on the ceramics–metal or ceramics–polymer interfaces do not exceed the adhesion
forces between ceramics and metal (for example, gold) or ceramics and solid polymer (for example, Teflon). In this
case, it may be assumed that force bonds are formed from the cylindrical inclusions (Fig. 2b). The maximum crack
opening can be estimated as am2 ' a(εm2 − εm1), where εm1 and εm2 are the maximum strains in the matrix and
bonds and εm1 � εm2 (Fig. 3). Figure 3 shows the σ–ε diagrams, where σm1 and σm2 are the maximum stresses in
the matrix and bonds, respectively. We note that the stresses σ1 and σ2 in the solid with a structure have already
been averaged. In Fig. 3, the dashed and dot-and-dashed curves are typical σ–ε diagrams for highly deformable
metals and solid polymers, respectively, and the solid line is the σ–ε diagram for brittle ceramics.

We consider two models of a crack. In the first model, bonds are absent inside the crack (necessary criterion),
whereas in the second model, force bonds exist in the vicinity of the crack tip (sufficient criterion).

We study the behavior of a composite in the vicinity of the tip of a rupture crack. It is assumed that force
bonds are absent inside the crack in the initial state and the stress σ∞ is specified at infinity. Let the stress σ∞ be
lower than the critical stress σ0

∞ for the necessary criterion. In this case, the crack does not grow since σ∞ < σ0
∞.

Under further gradual loading, the stresses σ∞ attain the critical value σ0
∞. For σ∞ = σ0

∞, the crack begins to grow
because of failure of the matrix, force bonds are formed from the more deformable material in the vicinity of the
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Fig. 4

Fig. 5

crack tip, and a pre-fracture zone appears (Fig. 4a). In accordance with the Leonov–Panasyuk–Dugdale model, the
stresses σm2 at the loaded part of the crack “try” to close the crack (Fig. 4b). The force bond nearest to the middle
of the crack fails when its relative elongation reaches the critical value εm2. The difference between the mechanical
models considered is as follows: a loaded part (∆ = 0) is absent for the necessary criterion, whereas a loaded part
(∆ > 0) exists for the sufficient criterion. Obviously, one can pass from one mechanical model to the other in the
limit as ∆→ 0. In the postcritical region, the “reinforcement” allows the composite to sustain the load additional
to σ0

∞.
3.2. Comparison of the Critical Stresses Predicted by the Necessary and Sufficient Criteria. According to

the models chosen, a pre-fracture zone is absent in the necessary criterion, whereas this zone exists in the sufficient
criterion. For these criteria, we express the stresses on the continuation of sharp cracks (y = 0) in terms of the total
SIF in the form [17]

σy(x, 0) = σ0
∞ +K0

I /(2πx)1/2
(
K0

I = σ0
∞

√
πl0nk, ∆ = 0

)
, (8)

σy(x, 0) = σ∗∞ +K∗I /(2πx)1/2. (9)

Here K∗I = σ∗∞
√
πl∗nk − σm2

√
πl∗nk[1 − (2/π) arcsin (1 −∆/l∗nk)], ∆ 6= 0, 2l0nk = 2l0(n, k) and 2l∗nk = 2l∗(n, k) are

the critical lengths of the cracks, K0
I and K∗I are the critical SIFs, and σ0

∞ and σ∗∞ are the critical stresses for the
necessary and sufficient criteria, respectively.

Let there be a crack of length 2l0nk such that ∆ = 0. Figure 5 shows the fracture curves. The dashed curve
refers to the necessary criterion, the dot-and-dashed curve refers to the sufficient criterion, and the solid line shows
the passage of the system from one state of equilibrium (pre-fracture zone is absent) to the other (pre-fracture zone
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exists). The dashed and dot-and-dashed curves refer to unstable crack growth, and the solid curve refers to stable
crack growth. During stable growth, the crack extension occurs (l0nk < l∗nk) and force bonds are formed at the crack
tip (Fig. 4). The new system can sustain an increasing load since σ∗∞ > σ0

∞. A peculiar trap for propagating cracks
is formed [15, 16].

We obtain relations between the critical parameters for the two criteria proposed. One can easily estimate
the critical SIFs K0

I and K∗I . After some transformations, we have

K0
I

σ0
∞
√
r1

=
√

π

2n

(
k
σm1

σ0
∞
− n

)
,

K∗I
σ∗∞
√
r1

=
√

π

2n

(
k
σm1

σ∗∞
− n

)
. (10)

In contrast to the first relation in (10), which can be used directly, the second relation contains an unknown
parameter ∆ characterizing the length of the pre-fracture zone [see (9)]. Relations (9) and (10) make sense if
K∗I > 0. It is noteworthy that criteria (6) and (7) proposed make sense also for a zero length of the crack since
the terms σ0

∞ and σ∗∞ are retained in relations (8) and (9). Thus, the first relation in (10) can be used to describe
crack initiation.

The last relation in (9) is simplified substantially if ∆/l∗nk is a small quantity. In this case, we obtain

arcsin (1−∆/l∗nk) ' π/2−
√

2∆/l∗nk.

With allowance for this simplification, relations (7) and (9) yield the quadratic equation for the parameter
√

∆/l∗nk:(√
∆
l∗nk

)2

− π

2
√

2
σ∗∞
σm2

√
∆
l∗nk

+
π

æ + 1
aεm2

l∗nk

G

2σm2
= 0.

We use the following simplification to calculate the roots of the last equation. Let
8

π(æ + 1)
aεm2

l∗nk

σm2

σ∗∞

G

σ∗∞
� 1.

Ignoring the squared quantity compared to unity, we obtain the explicit expression for the smaller root of the
quadratic equation: √

∆
l∗nk

=
√

2
æ + 1

aεm2

l∗nk

G

σ∗∞
.

Finally, the critical length of a rupture crack is written in the explicit form:
— for the necessary criterion (∆ = 0),

2l0nk
r1

=
(σm1

σ0
∞
− n

k

)2 k2

n
,

σm1

σ0
∞

=
√
n

k

√
2l0nk
r1

+
n

k
; (11)

— for the sufficient criterion (∆ 6= 0),

2l∗nk
r1

=
(σm1

σ∗∞
− n

k

)2 k2

n

(
1− 2σm2

πσ∗∞

√
∆
l∗nk

)−2

,

√
∆
l∗nk

=
√

2
æ + 1

aεm2

l∗nk

G

σ∗∞
,

(12)

σm1

σ∗∞
=
√
n

k

√
2l∗nk
r1

(
1− 2σm2

πσ∗∞

√
∆
l∗nk

)
+
n

k
.

The critical parameters K0
I , K∗I , l0nk, and l∗nk in relations (10)–(12) admit the limiting passage when the

SIFs and lengths of the cracks vanish (in classical relations, a similar limiting passage does not make sense).
The critical lengths of the cracks l0nk and l∗nk differ for the same value of σ∞. This difference can be rather

significant:

l∗nk
l0nk

=
(

1− 2
√

2
π(æ + 1)

σ
(2)
m

σ∞

aεm2

l∗nk

G

σ∞

)−2

. (13)

The critical stresses σ0
∞ and σ∗∞ for cracks of fixed length lnk are the estimates of the beginning and

completion of fracture: these critical stresses differ severalfold. Undoubtedly, all the estimates for the critical
parameters K0

I , K∗I , l0nk, l∗nk, σ0
∞, and σ∗∞ can be obtained numerically by using the second inequality in (7) and

initial relations (8)–(10) (if the solution exists).
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Remark 2. When a composite is reinforced by pre-stressed high-strength fibers, other problems arise since
the crack in the matrix may not open under low loads.

We estimate the orders of the dimensionless parameters ∆/l∗nk, σm2/σ
∗
∞, aεm2/l

∗
nk, and G/σ∗∞ in the case

where all the assumptions accepted above are valid and relations (12) hold. In the ratio G/σ∗∞, we pass to Young’s
modulus E using the relation G = E/[2(1 + ν)]; the estimates of the “theoretical” strength in terms of Young’s
modulus are known: σm1 = (0.1–0.2)E (see the review in [18]). If aεm2/l

∗
nk ∼ 10−2, then ∆/l∗nk ≈ 0.06 for

σm2/σ∞ ∼ 10, ∆/l∗nk ≈ 0.2 for σm2/σ∞ ∼ 102, and ∆/l∗nk ≈ 0.6 for σm2/σ∞ ∼ 103. Obviously, when σm2/σ∞ ∼ 1,
the critical lengths of the cracks l0nk and l∗nk can differ by one order of magnitude [see (13)].

Let us estimate the depth of the trap for propagating cracks (see Fig. 5). It is obvious that 2l∗nk = 2l0nk+2∆.
We confine our consideration to the simple case where n = k = 1. Taking into account relations (10) and (11) and
ignoring the secondary terms ∆/l011 � 1 and

√
2l011/r1 � 1, we obtain

σ∗∞
σ0
∞
'
(

1− 4
√

2
π(æ + 1)

σm2

σ∗∞

aεm2

l011

G

σ∗∞

)−1

.

The critical stresses predicted by the necessary and sufficient criteria σ∗∞ and σ0
∞ may differ considerably

(severalfold) within a certain range of dimensionless parameters that enter the last relations.
The crack resistance of ceramics can be improved [15, 16] by introducing highly deformable additives into

their composition.
One can easily find a relation between the critical stresses predicted by the necessary and sufficient criteria

proposed by Novozhilov [2] and the local minima and maxima for the crack propagation in Thompson’s model [19].
The work was supported by Russian Foundation for Fundamental Research (Grant Nos. 01-01-00873 and

00-15-96180).
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